igbt逆變器工作原理_igbt在逆變器中的作用,36創(chuàng)業(yè)加盟網(wǎng)給大家?guī)碓敿毜慕榻B,讓更多的人可以參考:igbt逆變器工作原理_igbt在逆變器中的作用。
IGBT(絕緣柵雙極型晶體管),是由BJT(雙極型三極管)和MOS(絕緣柵型場效應管)組成的復合全控型電壓驅(qū)動式功率半導體器件,兼有MOSFET的高輸入阻抗和GTR的低導通壓降兩方面的優(yōu)點。GTR飽和壓降低,載流密度大,但驅(qū)動電流較大;MOSFET驅(qū)動功率很小,開關(guān)速度快,但導通壓降大,載流密度小。
IGBT綜合了以上兩種器件的優(yōu)點,驅(qū)動功率小而飽和壓降低。非常適合應用于直流電壓為600V及以上的變流系統(tǒng)如交流電機、變頻器、開關(guān)電源、照明電路、牽引傳動等領域。
目前國內(nèi)缺乏高質(zhì)量IGBT模塊,幾乎全部靠進口。絕緣柵雙極晶體管(IGBT)是高壓開關(guān)家族中最為年輕的一位。由一個15V高阻抗電壓源即可便利的控制電流流通器件從而可達到用較低的控制功率來控制高電流。
IGBT的工作原理和作用通俗易懂版:
IGBT就是一個開關(guān),非通即斷,如何控制他的通還是斷,就是靠的是柵源極的電壓,當柵源極加+12V(大于6V,一般取12V到15V)時IGBT導通,柵源極不加電壓或者是加負壓時,IGBT關(guān)斷,加負壓就是為了可靠關(guān)斷。
IGBT沒有放大電壓的功能,導通時可以看做導線,斷開時當做開路。
IGBT有三個端子,分別是G,D,S,在G和S兩端加上電壓后,內(nèi)部的電子發(fā)生轉(zhuǎn)移(半導體材料的特點,這也是為什么用半導體材料做電力電子開關(guān)的原因),本來是正離子和負離子一一對應,半導體材料呈中性,但是加上電壓后,電子在電壓的作用下,累積到一邊,形成了一層導電溝道,因為電子是可以導電的,變成了導體。如果撤掉加在GS兩端的電壓,這層導電的溝道就消失了,就不可以導電了,變成了絕緣體。
IGBT的工作原理和作用電路分析版:
IGBT的等效電路如圖1所示。由圖1可知,若在IGBT的柵極和發(fā)射極之間加上驅(qū)動正電壓,則MOSFET導通,這樣PNP晶體管的集電極與基極之間成低阻狀態(tài)而使得晶體管導通;若IGBT的柵極和發(fā)射極之間電壓為0V,則MOSFET截止,切斷PNP晶體管基極電流的供給,使得晶體管截止。

圖1 IGBT的等效電路
由此可知,IGBT的安全可靠與否主要由以下因素決定:
--IGBT柵極與發(fā)射極之間的電壓;
--IGBT集電極與發(fā)射極之間的電壓;
--流過IGBT集電極-發(fā)射極的電流;
--IGBT的結(jié)溫。
如果IGBT柵極與發(fā)射極之間的電壓,即驅(qū)動電壓過低,則IGBT不能穩(wěn)定正常地工作,如果過高超過柵極-發(fā)射極之間的耐壓則IGBT可能永久性損壞;同樣,如果加在IGBT集電極與發(fā)射極允許的電壓超過集電極-發(fā)射極之間的耐壓,流過IGBT集電極-發(fā)射極的電流超過集電極-發(fā)射極允許的最大電流,IGBT的結(jié)溫超過其結(jié)溫的允許值,IGBT都可能會永久性損壞。
絕緣柵極雙極型晶體管(IGBT)

IGBT串聯(lián)諧振式電壓型逆變器的工作原理
該電源采用半橋結(jié)構(gòu)串聯(lián)諧振逆變電路,主電路原理如圖所示。在大功率IGBT諧振式逆變電路中,主電路的結(jié)構(gòu)對整個產(chǎn)品的性能十分重要逆變器的作用,由于電路中存在引線寄生電感,IGBT開關(guān)動作時在電感上激起的浪涌尖峰電壓Ldi/dt不可忽視,由于本電源采用的是半橋逆變電路逆變器的作用,相對全橋電路來說,將產(chǎn)生比全橋電路更大的di/dt。正確設計過壓保護即緩沖電路,對IGBT的正常工作十分重要。如果緩沖電路設計不當,將造成緩沖電路損耗增大,會導致電路發(fā)熱嚴重,容易損壞元件,不利于長期工作。為了給無功電流提供通路,ICBT必須反并聯(lián)快速二極管,在電壓型逆變器中,為了避免開關(guān)器件因Cd的短路電流而損壞,在開關(guān)器件換流過程中,上、下橋臂ICBT必須遵守先關(guān)斷后開通原則,即應留有死區(qū)時間(T。)。


IGBT串聯(lián)諧振式電壓型逆變工作過程如下:
當VT2開通時,隨著電流的上升,在線路雜散電感Lm的作用下,使得Uab下降到Vcc-Ldi/dt,此時前一工作周期以被充電到Vcc的緩沖電容C1,通過VT1的反并聯(lián)二極管VD1、VT2和緩沖電阻R2放電。在緩沖電路中,流過反并聯(lián)二極管VD1的瞬時導通電流ID1為流過線路雜散電感電流IL和流過緩沖電容C1的電流IC之和。即ID1=IL+IC,因此IL和di/dt相對于無緩沖電路要小得多。當VT1關(guān)斷時,由于線路雜散電感Lm的作用,使Uce迅速上升,并大于母線電壓Vcc,這時緩沖二極管VD1正向偏置,Lm中的儲能(LmI2/2)向緩沖電路轉(zhuǎn)移,緩沖電路吸收了貯能,不會造成Uce的明顯上升。
由于負載電路是采用品質(zhì)因數(shù)為Q的LC串聯(lián)諧振電路,因而加在三和C上的電壓是逆變器輸出基波電壓的Q倍,負載電流則與逆變器的輸出電流相同。這樣,串聯(lián)諧振電路的自身成了電流源。逆變器的輸出電壓與負載無關(guān),其值等于由C。保持恒定的電壓。因此,由于受已成電流源的負載的影響。在死區(qū)時間中,電流會通過IGBT的反并聯(lián)二極管繼續(xù)流通,這種逆變器具有如下特征。
(1)容易投入負載電力。配線電感可以和負載電感相抵,又有Cd的作用,因而即使是低壓電路,在諧振頻率附近工作,也能注入很大電流。感應加熱負載的等效阻抗多為幾十m0,如果逆變器的直流電壓為幾百V,就足以給出幾百kW的電力。它的這一特征表明,采用低壓開關(guān)器件并聯(lián),就可構(gòu)成這種系統(tǒng),因而實用性強。
(2)負載匹配容易。選擇開關(guān)器件,必須考慮最合適的電流和電壓。為了便于實現(xiàn)負載匹配,逆變器一艘都通過匹配變壓器輸出。可以通過調(diào)整匹配變壓器的初次級線圈匝比來獲得必要的負載電力所需的負載電壓以及滿足開關(guān)器件的最佳工作電壓要求。而在設計時,只要把匹配變壓器的漏感簡單地加進負載電感就可達到目的,設計的自由度大。在緩沖電路的元件選擇中,電容要選擇耐壓較高的電容,二極管最好選擇高性能的快恢復二極管,電阻要用無感電阻。
總結(jié):以上內(nèi)容就是igbt逆變器工作原理_igbt在逆變器中的作用詳細介紹,如果您對創(chuàng)業(yè)項目感興趣,可以咨詢客服或者文章下面留言,我們會第一時間給您項目的反饋信息。